CS 188: Artificial Intelligence

Reinforcement Learning (RL)

Pieter Abbeel - UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore

MDPs and RL Outline

- Markov Decision Processes (MDPs)
 - Formalism
 - ✓ Planning
 - Value iteration
 - Policy Evaluation and Policy Iteration
- ▶ Reinforcement Learning --- MDP with T and/or R unknown
 - Model-based Learning
 - Model-free Learning
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function Q*]
 - Policy search [learns optimal policy from subset of all policies]
 - Exploration vs. exploitation
- Large state spaces: feature-based representations

Reinforcement Learning - Basic idea: - Receive feedback in the form of rewards - Agent's utility is defined by the reward function - Must (learn to) act so as to maximize expected rewards - Agent - reward - r

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - . I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

MDPs and RL Outline Markov Decision Processes (MDPs) Formalism Planning Value iteration Policy Evaluation and Policy Iteration Reinforcement Learning --- MDP with T and/or R unknown Model-based Learning Model-free Learning Model-free Learning Difference Learning (performs policy evaluation) Temporal Difference Learning (performs policy evaluation) Q-Learning [learns optimal state-action value function Q¹]

Policy search [learns optimal policy from subset of all policies]

Large state spaces: feature-based representations

Exploration vs. exploitation

| Idea: | Step 1: Learn the model empirically through experience | Step 2: Solve for values as if the learned model were correct | Step 1: Simple empirical model learning | Count outcomes for each s,a | Normalize to give estimate of T(s,a,s') | Discover R(s,a,s') when we experience (s,a,s') | Step 2: Solving the MDP with the learned model (s,s,s') | Value iteration, or policy iteration

Learning the Model in Model-Based Learning

- Estimate P(x) from samples
 - Samples: $x_i \sim P(x)$
 - Estimate: $\hat{P}(x) = \operatorname{count}(x)/k$
- Estimate P(s' | s, a) from samples
 - $\bullet \quad \mathsf{Samples:} \quad s_0, a_0, s_1, a_1, s_2, \dots$
 - Estimate: $\hat{P}(s'|s,a) = \frac{\operatorname{count}(s_{t+1} = s', a_t = a, s_t = s)}{\operatorname{count}(s_t = s, a_t = a)}$
- Why does this work? Because samples appear with the right frequencies!

Model-based vs. Model-free

- Model-based RL
 - First act in MDP and learn T, R
 - Then value iteration or policy iteration with learned T, R
 - · Advantage: efficient use of data
 - Disadvantage: requires building a model for T, R
- Model-free RL
 - Bypass the need to learn T, R
 - Methods to evaluate V^π , the value function for a fixed policy π without knowing T, R:
 - (i) Direct Evaluation
 - (ii) Temporal Difference Learning
 - Method to learn π*, Q*, V* without knowing T, R
 - (iii) Q-Learning

14

Direct Evaluation

- Repeatedly execute the policy π
- Estimate the value of the state s as the average over all times the state s was visited of the sum of discounted rewards accumulated from state s onwards

Example: Direct Evaluation Episodes: +100 (1,1) up -1 (1,1) up -1 -100 (1,2) up -1 (1,2) up -1 (1,2) up -1 (1,3) right -1 (1,3) right -1 (2,3) right -1 (2,3) right -1 (3,3) right -1 (3,3) right -1 (3,2) up -1 $\gamma = 1, R = -1$ (3,2) up -1 (4,2) exit -100 (3,3) right -1 (done) $V(2,3) \sim (96 + -103) / 2 = -3.5$ (4.3) exit +100 (done) $V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$

Model-Free Learning

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

• Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$

$$\hat{P}(x) = \text{num}(x)/N$$

$$E[f(x)] \approx \sum_{x} \hat{P}(x) f(x)$$

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$

$$E[f(x)] \approx \frac{1}{N} \sum_{i} f(x_i)$$

 Why does this work? Because samples appear with the right frequencies!

Limitations of Direct Evaluation

- Assume random initial state
- Assume the value of state (1,2) is known perfectly based on past runs

Now for the first time encounter (1,1) --- can we do better than estimating V(1,1) as the rewards outcome of that run?

Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples of s' (drawn from T!)

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2)$$

$$sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s.

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often
- Temporal difference learning
- Policy still fixed!
- Move values toward value of whatever successor occurs: running average!

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

22

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

2

Policy Evaluation when T (and R) unknown --- recap

- Model-based:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Model-free:
 - Direct evaluation:
 - V(s) = sample estimate of sum of rewards accumulated from state s onwards
 - Temporal difference (TD) value learning:
 - Move values toward value of whatever successor occurs: running average!

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we' re sunk:

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active RL

- Full reinforcement learning
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You can choose any actions you like
 - Goal: learn the optimal policy / values
 - ... what value iteration did!

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with V₀*(s) = 0, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with Q₀*(s,a) = 0, which we know is right (why?)
 - Given Q_i*, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$

28

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$\begin{split} Q^*(s,a) &= \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right] \\ sample &= R(s,a,s') + \gamma \max_{a'} Q(s',a') \end{split}$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it

3

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - \blacksquare With probability $\epsilon,$ act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n)=u+k/n (exact form not important)

$$Q_{i+1}(s,a) \leftarrow (1-\alpha)Q_i(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} Q_i(s',a')\right)$$
 now becomes:

$$Q_{i+1}(s, a) \leftarrow (1 - \alpha)Q_i(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{s'} f(Q_i(s', a'), N(s', a')) \right)$$

Q-Learning

Q-learning produces tables of q-values:

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π* exactly
 - Evaluate a fixed policy π

Techniques:

- Model-based DPs
 - Value Iteration
 - Policy evaluation
- If we don't know the MDP
 - We can estimate the MDP then solve
 - Model-based RL
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s.a) for the optimal policy while executing an exploration policy
- Model-free RL
 - Value learning
 - Q-learning

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:
- In naïve g learning, we know nothing about this state or its q states:
- Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the
 - Example features:
 - Distance to closest ghost Distance to closest dot
 - Number of ahosts
 - 1 / (dist to dot)2
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a g function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$\begin{split} & transition = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) & \text{Approximate Q's} \end{split}$$

- Intuitive interpretation:

 - Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- · Formal justification: online least squares

Example: Q-Pacman
$$Q(s,a) = 4.0f_{DOT}(s,a) - 1.0f_{GST}(s,a)$$

$$f_{DOT}(s, \text{NORTH}) = 0.5$$

$$f_{GST}(s, \text{NORTH}) = 1.0$$

$$Q(s,a) = +1$$

$$R(s,a,s') = -500$$

$$error = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha \left[-501 \right] 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha \left[-501 \right] 1.0$$

$$Q(s,a) = 3.0f_{DOT}(s,a) - 3.0f_{GST}(s,a)$$

Minimizing Error $E(w) = \frac{1}{2} \sum_{i} \left(\sum_{k} f_{k}(x_{i}) w_{k} - y_{i} \right)^{2}$ $\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i) w_k - y_i \right) f_m(x_i)$ $E \leftarrow E + \alpha \sum_{i} \left(\sum_{k} f_k(x_i) w_k - y_i \right) f_m(x_i)$ Value update explained: $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

Policy Search

Policy Search

✓ Large state spaces: feature-based representations

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course.
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

52

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:

$$\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don't have to know them)
- Take uphill steps, recalculate derivatives, etc.

54

c

MDPs and RL Outline

- Markov Decision Processes (MDPs)
 - Formalism
 - Value iteration
 - Expectimax Search vs. Value Iteration
 - Policy Evaluation and Policy Iteration
- Reinforcement Learning
 - Model-based Learning
 - Model-free Learning
 - Direct Evaluation [performs policy evaluation]
 - Temporal Difference Learning [performs policy evaluation]
 - Q-Learning [learns optimal state-action value function Q*]
 - Policy Search [learns optimal policy from subset of all policies]

To Learn More About RL

Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

 Graduate level course at Berkeley has reading material pointers online:*

http://www.cs.berkeley.edu/~russell/classes/cs294/s11/

56

Take a Deep Breath...

- We're done with search and planning!
- Next, we'll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - ... lots more!
- Last part of course: machine learning