CS 188: Artificial Intelligence

Reinforcement Learning (RL)

Pieter Abbeel — UC Berkeley

Many slides over the course adapted from Dan Klein, Stuart
Russell, Andrew Moore

MDPs and RL Outline

= Markov Decision Processes (MDPs)
Formalism

'/ Planning
= Value iteration
= Policy Evaluation and Policy Iteration
=== = Reinforcement Learning --- MDP with T and/or R unknown
= Model-based Learning

= Model-free Learning
= Direct Evaluation [performs policy evaluation]
= Temporal Difference Learning [performs policy evaluation]
= Q-Learning [learns optimal state-action value function Q*]
= Policy search [learns optimal policy from subset of all policies]

= Exploration vs. exploitation
= Large state spaces: feature-based representations

Reinforcement Learning

[DEMOS on

= Basic idea: next slides]

= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

state | |reward action
5, ' a,

b T
: s.. | Environment ‘4—

Example: learning to walk

Before learning (hand-tuned) One of many learning runs After learning
[After 1000
field
traversals]

[Kohl and Stone, ICRA 2004]

Example: snake robot

Example: Toddler

[Andrew Ng]

5

Tedrake, Zhang and Seung, 2005 6

In your project 3

ny

Reinforcement Learning

= Still assume a Markov decision process
(MDP):
= Asetof statess €S
= A set of actions (per state) A
= A model T(s,a,s’)
= A reward function R(s,a,s”)
= Still looking for a policy mi(s)

= New twist: don’t know T or R
= |.e. don’ t know which states are good or what the actions do
= Must actually try actions and states out to learn

MDPs and RL QOutline

= Markov Decision Processes (MDPs)
/Formalism

v/ Planning
= Value iteration
= Policy Evaluation and Policy lteration
=== = Reinforcement Learning --- MDP with T and/or R unknown
= Model-based Learning

= Model-free Learning
= Direct Evaluation [performs policy evaluation]
= Temporal Difference Learning [performs policy evaluation]
= Q-Learning [learns optimal state-action value function Q*]
= Policy search [learns optimal policy from subset of all policies]

= Exploration vs. exploitation
= Large state spaces: feature-based representations

Example to lllustrate Model-Based vs.
Model-Free: Expected Age

Goal: Compute expected age of cs188 students
Known P(A) |

E[A]l = ZP((I)'(!

=035%x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

{
/
_ num()
E[A] ~ AL,ZU,
E[Al =~ ZP a)-a !

Model-Based Learning

= |dea:
= Step 1: Learn the model empirically through experience

= Step 2: Solve for values as if the learned model were
correct

= Step 1: Simple empirical model learning
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s’)

= Step 2: Solving the MDP with the learned modgh s
= Value iteration, or policy iteration

Example: Learning the Model in
Model-Based Learning

y

= Episodes: Sl
(1,1) up -1 (1,1) up -1) ' . f 00
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 ' N [ey
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 ! 2 s 4ox
(3,3) right -1 (3.2) up -1 v=1
(3,2) up -1 (4,2) exit 100
(3.3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4.3) exit +100 T(<2,3>, right, <3,3>) = 2/2
(

done)

Learning the Model in Model-
Based Learning

Estimate P(x) from samples
= Samples: Tj ™~ P(.T)

= Estimate: P(l‘) = COUHt(l‘)/kZ

Estimate P(s’ | s, a) from samples

= Samples: S0,@0,S81,@1,82, ...

. Estimate: P(s’\ a) count(syp1 =8, ar = a, s = s)
: s,0) = —— 2 L T
count(s; = s,a; = a)

Why does this work? Because samples appear with the right
frequencies!

Model-based vs. Model-free

= Model-based RL
= First actin MDP and learn T, R
= Then value iteration or policy iteration with learned T, R
= Advantage: efficient use of data
= Disadvantage: requires building a model for T, R

= Model-free RL
= Bypass the need to learn T, R
= Methods to evaluate V7, the value function for a fixed policy =
without knowing T, R:
= (i) Direct Evaluation
= (ii) Temporal Difference Learning
= Method to learn 7*, Q*, V* without knowing T, R
= (iii) Q-Learning

Direct Evaluation

Repeatedly execute the policy 7
Estimate the value of the state s as the
average over all times the state s was
visited of the sum of discounted rewards
accumulated from state s onwards

Example: Direct Evaluation

y
= Episodes: i Bl Baa B

(1,1) up -1 (1,1) up -1

dk f
(1,2) up -1 (1,2)up -1
(12)up -1 (1.3) ight -1 ' BN P e
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 ! 2 3 4ox
(3,3) right -1 (3,2) up -1 y=1,R=-1
(3,2) up -1 (4,2) exit 100
(3,3) right -1 (done)
(4.3) exit +100 V(2.,3) ~ (96 +-103) / 2 = -3.5
(done) V(3,3) ~ (99 + 97 +-102) / 3= 31.3

Model-Free Learning

Want to compute an expectation weighted by P(x):
E[f(2)] = 22, P(x)f(2)

Model-based: estimate P(x) from samples, compute expectation

P(z) = num(z)/N '

Model-free: estimate expectation directly from samples
2; ~ P(z) E[f(z)] = § X, f(z:)

Why does this work? Because samples appear with the right
frequencies!

Limitations of Direct Evaluation

—- | - | = |3

= Assume random initial state

= Assume the value of state
(1,2) is known perfectly
based on past runs

= Now for the first time
encounter (1,1) --- can we do
better than estimating V(1,1)
as the rewards outcome of
that run?

Sample-Based Policy Evaluation?

Vi1(s) — D T(s,m(s), s R(s,m(s),8) + 7V (s)]

Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

sampler = R(s, 7(s), 5)) + AV (s1)
samples = R(s,m(s),s5) + vV (sh)

sampley,

R(s, 7(s), 8}) + 7V (s})

Almost! But we can’t
rewind time to get sample
after sample from state s.

1
Vi 1(s) P Z sample;
i

Temporal-Difference Learning

Big idea: learn from every experience!
= Update V(s) each time we experience (s,a,s’ ,r)
= Likely s’ will contribute updates more often

7i(s)
s, 71(s)
= Temporal difference learning
= Policy still fixed!)
= Move values toward value of whatever As

successor occurs: running average!

Sample of V(s): sample = R(s,n(s), s’) =+ ')’Vﬂ(s/)

Update to V(s): VT(s) « (1 — a)V™(s) + (a)sample

Same update:

V7T(s) «— V™(s) + a(sample — V7 (s))

21

Temporal-Difference Learning

Big idea: learn from every experience!
= Update V(s) each time we experience (s,a,s’ ,r)

s
= Likely s’ will contribute updates more often nu(s)
s, 11(s)
= Temporal difference learning

= Policy still fixed!

As
= Move values toward value of whatever
SuUCCessOor occurs: running average!

Sample of V(s): sample = R(s,7(s), 5/) + ’YVW(S/)

Update to V(s): VT(s) «— (1L —a)V™(s) 4+ (a)sample

Same update:

V7T(s) « V™(s) + a(sample — V™ (s))

Exponential Moving Average

= Exponential moving average
= Makes recent samples more important

Tt (l—a) ze+(1—a)? Tt
I+1l-a)+(1-a)?2+...

L

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Iy = (l —Q) *Tp_1t+ta-Ty

= Decreasing learning rate can give converging averages

23

Policy Evaluation when T (and R) unknown --- recap

= Model-based:

= Learn the model empirically through experience
= Solve for values as if the learned model were correct

= Model-free:
= Direct evaluation:

= V(s) = sample estimate of sum of rewards accumulated from state s onwards
= Temporal difference (TD) value learning:
= Move values toward value of whatever successor occurs: running average!
sample = R(s,7(s),s") +~yV™(s")
V7T(s) — (1 —a)V™(s) 4+ (a)sample

Problems with TD Value Learning

= TD value leaning is a model-free way
to do policy evaluation

= However, if we want to turn values into
a (new) policy, we’ re sunk:

-
-

7(s) = argmaxQ*(s, a)
Q*(s,a) =Y T(s,a, s') [R(s, a,s) + ",Vx(s/)]

= |dea: learn Q-values directly

Makes action selection model-free too!

26

Active RL

= Full reinforcement learning

= You don’ t know the transitions T(s,a,s’)
= You don’ t know the rewards R(s,a,s’) [O P Py
= You can choose any actions you like T T
= Goal: learn the optimal policy / values

= ... what value iteration did!

In this case:
= Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation
= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Detour: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,'(s) = 0, which we know is right (why?)
= Given V;/, calculate the values for all states for depth i+1:

Vig1(s) < ml?xz T(s,a,s") [R(s. a,s’) + 7 Vl(s/)}

= But Q-values are more useful!
= Start with Q,(s,a) = 0, which we know is right (why?)
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qit1(s:0) = S T(s,0:8) [R(s.a,) +7 maxQu(s'.a)

28

Q-Learning

= Q-Learning: sample-based Q-value iteration

= Learn Q*(s,a) values
= Receive a sample (s,a,s’ ,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

Q(5,0) = S T(s,0,8) [R(s,0,8) + 7 max (s, a)
sample = R(s,a,s') +~ max Q(s',d)

= Incorporate the new estimate into a running average:
Q(s,a) — (1 — a)Q(s,a) + (a) [sample]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
= If you explore enough
= If you make the learning rate small enough
= ... but not decrease it too quickly!
= Basically doesn’ t matter how you select actions (!)

= Neat property: off-policy learning
= learn optimal policy without following it

31

Exploration / Exploitation

= Several schemes for forcing exploration
= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?
= You do explore the space, but keep thrashing
around once learning is done
= One solution: lower ¢ over time
= Another solution: exploration functions

33

Exploration Functions

= When to explore
= Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet)
established

= Exploration function
= Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) = u+ k/n (exact form not important)

Qit1(s,a) « (1 —a)Qi(s,a) + (R(s,a‘ s+ 7 max Ql(s"a’))

now becomes:
Qit1(s,a) +— (1 —@)Qi(s,a) + (R(s,a‘ s+ 7 max F(Qi(s',a), N(s’,a')))

35

Q-Learning

= Q-learning produces tables of g-values:

Q-VALUES AFTER 1000 EPISODES

The Story So Far: MDPs and RL

Techniques:

= Model-based DPs
= Value lteration
= Policy evaluation

Things we know how to do:
= |f we know the MDP

= Compute V*, Q*, n* exactly
= Evaluate a fixed policy =

= |f we don’ t know the MDP
= We can estimate the MDP then solve = Model-based RL

= We can estimate V for a fixed policy n

= We can estimate Q*(s,a) for the
optimal policy while executing an
exploration policy

= Model-free RL
= Value learning
= Q-learning

38

Q-Learning

= |n realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

= Instead, we want to generalize:
= Learn about some small number of training states
from experience
= Generalize that experience to new, similar states

= This is a fundamental idea in machine learning, and
we’ |l see it over and over again

Example: Pacman

= Let’s say we discover
through experience
that this state is bad:

= In naive q learning, we
know nothing about
this state orits q
states:

= Or even this one!

40

Feature-Based Representations

= Solution: describe a state using
a vector of features
= Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)
. etc.
Can also describe a g-state (s, a)
with features (e.g. action moves
closer to food)

41

Linear Feature Functions

= Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

V(s) = w1f1(s) +wafa(s) + ... +wnfn(s)
Q(57 CL) = wlfl(37 a)+’UJ2f2(S7 CL)+ . -+wnfn(57 (1)

= Advantage: our experience is summed up in a
few powerful numbers

= Disadvantage: states may share features but
be very different in value!

42

Function Approximation

Q(Sa CL) = w1f1(57 (L)+’U}2f2($, CL)+ . ~+wnfn(sa a)

= Q-learning with linear g-functions:
transition = (s,a,r,s’)
difference = [,- + 5 max Qs u’)} - Q(s,a)
Q(s,a) — Q(s,a) + «[difference] ExactQ’'s
w; «— w; + « [difference] f;(s,a) Approximate Q's

= [ntuitive interpretation:
= Adjust weights of active features

= E.g. if something unexpectedly bad happens, disprefer all states
with that state’ s features

= Formal justification: online least squares
43

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s, a)
fD()T(S, NORTH) = 0.5
fasT(s,NORTH) = 1.0

Q(s,a) = +1
R(s,a,s'") = —500
error = —501

wpor + 4.0+ a[-501]0.5
wasT +— —1.0 4+ a[-501]1.0

Q(s,a) =3.0fpor(s,a) —3.0fgsr(s, a)

Linear regression

3

Given examples (;, ¥;)i=1..n
Predict Yn+41 given anew point Tp41

45

Linear regression

Prediction
Yi = wo +wiwi1 + wazin

Prediction
Ui = wo + wi;

Ordinary Least Squares (OLS)

. Error or “residual”
Observation Y

Prediction ”g

S fe(@dwy —
3

o T »

47

Minimizing Error

K2

2
Bw) =% (2 Sy~ yi)
k

oFE

Owm,

=> (Z Fr(z)wy, — yz) Jm(2;)
i \k

E—E+4a), (Z Fr(z)wy — yi) fm(xi)
i k
Value update explained:

w; — w; + «a[error] fi(s,a)

48

Overfitting

Degree 15 polynomial

MDPs and RL Outline

= Markov Decision Processes (MDPs)
Formalism
/ Planning
= Value iteration
= Policy Evaluation and Policy lteration
= Reinforcement Learning --- MDP with T and/or R unknown
Model-based Learning

= Model-free Learning
Direct Evaluation [performs policy evaluation]
Temporal Difference Learning [performs policy evaluation]
Q-Learning [learns optimal state-action value function Q*]
=== = Policy search [learns optimal policy from subset of all policies]

v Exploration vs. exploitation
4 Large state spaces: feature-based representations

50

Policy Search

51

Policy Search

= Problem: often the feature-based policies that work well
aren’ t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions
= We’ Il see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

52

Policy Search

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= [f there are a lot of features, this can be impractical

53

Policy Search*

= Advanced policy search:
= Write a stochastic (soft) policy:

ﬂ-w(s) o ezi wifi(sva)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, but you don’ t have
to know them)

= Take uphill steps, recalculate derivatives, etc.

54

MDPs and RL Outline

= Markov Decision Processes (MDPs)
= Formalism
= Value iteration
= Expectimax Search vs. Value lteration
= Policy Evaluation and Policy Iteration

= Reinforcement Learning
= Model-based Learning

= Model-free Learning
= Direct Evaluation [performs policy evaluation]
= Temporal Difference Learning [performs policy evaluation]
= Q-Learning [learns optimal state-action value function Q]
= Policy Search [learns optimal policy from subset of all policies]

To Learn More About RL

= Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

= Graduate level course at Berkeley has
reading material pointers online:*

http://www.cs.berkeley.edu/~russell/classes/
cs294/s11/

56

Take a Deep Breath...

= We’ re done with search and planning!

= Next, we' Il look at how to reason with
probabilities
= Diagnosis
= Tracking objects
= Speech recognition
= Robot mapping
= ... lots more!

= Last part of course: machine learning

57

